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Abstract

Our implementation of the Metropolis and Wolff algorithms in C++ offers a comprebensive suite of tools to study several
properties of interest for the Heisenberg model, including energy, magnetization, specific beat capacity, and magnetic sus-
ceptibility. For the Metropolis algorithm, we allow for different sampling procedures, including a 180° and fully random
spin-flip as well as small step and Gaussian distributed trial moves. Additionally, we also implement an Adaptive Metropolis
algorithm that continuously optimizes the spin-flip acceptance rate. Our model includes variable interaction strength, an

external magnetic field, and global magnetic anisotropies, and supports varying cubic lattice sizes and different dimensions
(D =1, 2, 3) with individual lattice lengths (L,). We study both the ferromagnetic—paramagnetic phase transition and
related critical phenomena, as well as the dynamical properties of de-magnetization for different internal anisotropies and
temperatures. All calculations were performed in parallel on the Euler cluster.
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1. INTRODUCTION

ATTICE models — discrete geometrical structures

which originated as a description of atoms in solid
state physics — are one of the most important simplifica-
tions in many areas of physics. These models are used to
understand the formation of order and disorder in crystals,
to predict phase transitions of magnetic materials, or to
model interactions of particles. In this project, we are inves-
tigating the three-dimensional Heisenberg model, a lat-
tice model from statistical physics used to model ferromag-
netism. In the first chapter (BACKGROUND), we provide an
introduction into the Heisenberg model. Additionally, we
explain the phenomenon of phase transitions determined
by their order parameter, and introduce critical exponents
for physical observables of interest such as the magnetiza-
tion, susceptibility, and specific heat capacity. Then, we
present the Metropolis and Wolff algorithms that we use to
simulate thermal processes in the Heisenberg model. Next,
we introduce our IMPLEMENTATION and explain how we
compare the different algorithms. The section on RESuLT
concerns convergence, thermalization, and Monte Carlo
phase space sampling, in addition to critical behaviour at
the phase transition. We show that it is possible to study
systems of different dimensionality, and include an external
magnetic field and magnetic anisotropies into the lattice.
This enables us to study spin models on different lattices
with richer physics in two-dimensional systems or to inves-
tigate the competition of order and disorder with magnetic
fields and internal anisotropies. In our SUMMARY AND
OUTLOOK, we resume our findings and provide ideas for
future investigations.
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2. BACKGROUND

i. Heisenberg Model

The most basic ingredient of our model is a lattice A. Itis
defined as a periodic arrangement of sites labeled by their
respective coordinates. We only consider cubic lattices of

side lengths L x Ly x L, with sites

(i,4,k) €1,

Each lattice site is occupied by a spin G. In contrast to
quantum mechanics, we are not dealing with operators
which act on states. Instead, we consider classical spins:
0 = (04,0y,02), where 0; € R. This means that each spin
is a vector, pointing in a certain direction, and a superposi-
tion of states is not allowed. Additionally, we require the
spins to be normalized: |5| = 1. In principle, this means
that we allow each spin to rotate freely on the unit sphere.
However, we also have to model the interactions between
different spins. Depending on the energetic cost of being
aligned in a certain direction, the spins will favor certain
configurations. The Hamiltonian determines the en-
ergy I of the lattice A for a given spin configuration &-:

HHelsenberg :_J Z 0j* U] h Zal (2)

where the scalar product 6; - 5 between two vectors de-
scribes how much those spins overlap. Here, we only con-
sider the interaction of two nearest neighbor spins (3, j)
with a certain interaction strength .J as well as the interac-
tion of each spin G; with an external magnetic field h.In
eq. 25 we have to sum over all nearest neighbors, or equiva-
lently, over all bonds between lattice sites. For a 3d lattice
of lengths L, Ly, L, this means that the sums in eq.
can be computed as following:

La: Yy Lz
foz 2.2 2. Gijk (3)
=1 =1 k=1
Lo-1Ly L,
Y. GiGi= Y. . Y. Gijk-Oistjk +etc.  (4)
(i7) i1 =1kl

all bonds parallel to x

where (4, j, k) are the Cartesian coordinates of each spin in
X-, y-, and z-direction, respectively. In eq. |4} we describe the
summation for open boundary conditions. For periodic
boundary conditions, we have to change Z =1,y ZL: 2,

'H is a function which returns a scalar F, defined to be the energy,

given a configuration of spins o = {071, ...,0y } foralattice of N spins.

and similar for the summations over y and 2. By calculating
eq. [Jusing the summations in eq. Jand[4} we can efficiently
compute the energy of the Heisenberg model defined on a
cubic lattice.

One important quality of the Heisenberg model is that
it can be used to study phase transitions. In the Ferro-
magnetic Heisenberg model (J > 0), the ground state, i. e.
the state of lowest energy, is a spin configuration where all

spins point in the same direction 7

Gos={Gi=cVieA}. (s)
For low temperatures, we expect to find the system in a state
with most of the spins parallel to each other, while thermal
fluctuations dominate at high temperatures, leading to a
random orientation of the spins. Thus, we predict two
phases: a ferromagnetic phase and a paramagnetic phase,
depending on the temperature. To classify those phases,
we introduce the magnetization:

N (©

where M is the average spin orientation over all lattice sites
N =L, Ly- L. In the Ferromagnetic Heisenberg model,
M can be used as an order parameter to distinguish be-
tween a low-temperature ordered phase with non-zero mag-
netization (ferromagnetic phase) and a high-temperature
disordered phase with zero magnetization (paramagnetic
phase). We denote the critical temperature at which the
phase transition occurs as 7. One may be tempted to
ask what the spin direction ¢ in the ferromagnetic ground
state is. Indeed, there does not exist a preferred direction.
This naturally leads to the continuous O(3)-symmetry for
the 3d Heisenberg model without external field h=0.1If
we rotate all spins in our lattice by the same angles, the
total energy does not change. However, if h# 0, this sym-
metry is externally broken. In general, we expect M — 1
forT - 0and M — 0 for T' — oo where M = HMH For
a quantum mechanical lattice model with spin operators
whose components do not commute, this symmetry leads
to the phenomenon of collective excitations described by
quasiparticles. For example, a quantized spin density wave
can be described by magnons. Similar excitations can also
be studied in the classical Heisenberg model. This is of-
ten used to model the semi-classical limit of corresponding
quantum systems. [ As such, classical models are used to
simulate features such as frustration 22 or perform calcu-
lations on interesting systems such as difterent lattices. =51
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ii. Monte Carlo Phase Space Sampling

In order to perform calculations with the Heisenberg
model, one needs to compute expectation values of quan-
tities such as energy or magnetization. In general, the ex-
pectation value of an observable X is defined as follows:

(X) = Y piXi. )

Here, p; is the probability that the observable X has the
value X;. The sum }; runs over all possible values of X,
where we have to ensure that the probabilities are normal-
ized: }; p; = 1. In statistical physics, we compute expecta-
tion values by means of the partition sum Z:

Z=ye ", (8)

where the Boltzmann factor e % contains the thermody-
. . _ 1

namic beta or inverse temperature 3 = T and the energy
FE; of a certain microstate 1, i.e., a certain spin conﬁgura—
tion ;. To calculate the probability of a macrostate, e.g., a
state of certain energy (which can be achieved by difterent
spin configurations), we have:

1 _3E,

pi=—e " (9)

Z
The expectation values of observables such as energy can
be computed if we know Z. For the energy, we have

_OlogZ
op

While it is generally possible to compute Z exactly for small

(F)= with Z=Z7Z(5). (10)

systems with finite degrees of freedom the complexity of
this problem grows exponentially with the lattice dimen-
sions. Moreover, we have to consider that each spin has
infinitely many possible states in the Heisenberg model. [l
Again, we can only compute Z exactly for small systems.
This explains why we need numerical algorithms to sim-
ulate this lattice. Often, we are relying on Monte Carlo
methods to sample the phase space, i.e., approximate the
exact expectation values of observables. The success of ran-
dom Monte Carlo sampling stems from the fact that we are
usually only exploring a small part of the total phase space.

*If we consider the Ising model, where o; = %1 for every site in-
stead of 7;, we know that Z is a sum over oV terms, with N being the
total number of spins. Thus, we could generally compute the expec-
tation values of small Ising models exactly. However, even for a small
cubic lattice of side length L = 5 in three dimensions, we already have
2555 & O( 1037) different possible configurations, which is impossi-
ble to handle. This explains why for almost all lattice systems, we need
another way to calculate expectation values.

For sufficiently large NV, we can estimate the expectation
values of observables X such as energy £/ and magnetiza-

tion MP]as follows:

1 N
(%)= 52X, (o
and
2y LSy
<X) N;Xl (12)

under the assumptions that:
(a) pi= %, the probability of each measurement is equal,
(b) X1 is measured for a system in thermal equilibrium,

(c) (XiXis1) # 0, ie., there exist no temporal correla-

tions.

In order to fulfill (a), we need to ensure that the measure-
ments are uncorrelated, which is equivalent to (c). We can
use the non-linear correlation function to study the de-
viation of an observable X (¢) from its steady state value

X(t— oo)m
(X (1)) = (X(t = 0))
(X(t0)) —{X(t—00))’

Gxnl(t) = (13)

where t is the initial time and ¢ — oo is the time when we

have reached thermal equilibrium. We can see that

dxn(to)=1 and ¢xp(t—>00)—>0. (14)

One idea to determine thermal equilibrium is to measure
the energetic variance (which is proportional to the specific
heat capacity cy, quantity that is constant in thermal equi-
librium), depending on the number of steps after starting
from a specific lattice configuration, and set an error on
Ocy - Then, one could argue that thermal equilibrium is
reached when the system’s specific heat capacity has a low-
enough variance. However, we can also try to determine

the non-linear correlations directly. We expect that:

dxi(t) ~ e (15)

where tSl is the non-linear correlation time, which is also

defined as: 7
= [Tt oxm(®), (6)

because we know that in general:

oo ,t/,.:
[0 dte T. (17)

3For the Heisenberg model, we have three magnetization compo-

nents M; where (X') is a vector and <X 2) a scalar.
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We can approximate 7 (and hence tgl) and with N o
discrete values ¢;: &I

1 Ncumff
TR —+ Z ;. (18)
2 i=1

As the correlations increase close to the critical temperature,
we expect tgl to increase when approaching T(c. This is
know as the critical slowing down of the dynamics: ©J

t8l~ lim |T-Te| ™
0~ Jim [T=Tol ™, (19)

where z is the non-linear dynamical critical exponent. 7l
Thus, is becomes increasingly hard to calculate expectation
values upon approaching 7. This power law dependence
is due to a critical behaviour general to the Heisenberg
model. Moreover, we expect the correlation time to depend
on the lattice dimensions, because a larger lattice leads to
more steps needed to reach thermal equilibrium. Hence,
we have to determine ¢y, for a given volume V' = L3 and
extrapolate it for a different volume V' = L - Ly-L,:

!
tvl = Vtv . (20)

Similar to the previous discussion, we also have to ensure
that lattice configurations are uncorrelated when we mea-
sure a series of observables to calculate expectation values.
The linear correlation function is defined as:

(X (o) X () - (X (t))*
(X (t0)2) - (X (t0))?

where t( is the time needed to reach thermalization. Simi-

Pxi(t) = ) (21)

larly to ¢ x (), we again expect:

dx.1(t) ~e M. (22)

Thus, we can determine the linear correlation time tb
with the same approximation, see eq. 18] Given a series of
measurements X1, ..., X y which can be used to compute
expectation values of the respective observables, see eq.

and[i2} we are also interested in the variance:
2 2 2
ox = (X°) - (X)". (23)

The fluctuation-dissipation theorem provides a useful
tool to use such fluctuations in energy or magnetization
and associate them with other quantities such as the spe-
cific heat or susceptibility. Thus, we can relate variances
in energy I for a given temperature 7" to the specific heat
capacity cy:

1

EE) - e

Cy =—

Often, one normalizes ¢y by the total number of spins
N =L, Ly-L,.Similarly, we can also measure the mag-
netic susceptibility x by calculating variances in the mag-
netization M:

1

(YRR} ()

X
Note that the magnetic susceptibility is defined even for

h = 0 (no external field).

iii. Phase Transitions and Critical Exponents

The phase transition from a ferromagnetic to a paramag-
netic phase can be measured by interpreting the magne-
tization M as an order parameter. M goes to zero at the
critical temperature T (or becomes significantly smaller
in finite-size systems). If there is a discontinuity (e.g., jump)
in the order parameter at T, then we have a first-order (dis-
continuous) phase transition. Otherwise, we are observing
a second-order (continuous) phase transition, which is the
case for the Heisenberg model, where M (7") is a continu-
ous function. Moreover, the specific heat capacity diverges
(or becomes maximal), but there is no jump, in contrast
to first order transitions. This criterion (i.e., observing the
maximum of ¢y (1")) can be used to determine the critical
temperature 7. The divergent behaviour of quantities
such as the specific heat, susceptibility, or correlation length
when approaching T can be modelled by power-laws with
so-called critical exponents. ™ For example, we are inter-
ested in the critical exponent of the order parameter /3 € IR:

T-T,
Tc
which is only defined for t <0 as M (¢ >0) = 0. Similarly,

we would like to determine the function

M(t)~11€ir%|t|_5 with ¢ := . (26)

v (1) ~ il (27)

where « is the critical exponent for the specific heat. We
write a for T'> T and o' for T < T The critical expo-
nents 7y and 7/ for the magnetic susceptibility

i Y
x(t) %g%\tl (28)

are defined analogously. ™ In general, spins aggregate to
clusters with exponentially decaying correlation lengths &.
By introducing v, v/ for the correlation length: &

£~ lim ™ (29)

we can characterize the increase of correlations close to

the critical point. For larger systems, we expect a more
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pronounced divergence peak. 7] The height of the suscep-
tibility peak scales with v/ Y whereas the width of the
critical region decreases with L~Y7 772 Hence, we can
use the finite size scaling relation of the susceptibility to
determine the critical exponents y and v:

x~ L P =Te) L), (30)
where f is the scaling function. 7] Another useful quantity
()

UL:l_W (31)

is the Binder cumulant:

which is defined with the higher-order moments of the
magnetization (M 2) and (M 4) to determine T precisely
since Uy, is independent of L at T 7] Hence, we can plot
UL (T) for different system length L against the temper-
ature and determine the critical temperature T as the
point where the different U, (T") curves overlap. 7 Even
with periodic boundary conditions, we expect the criti-
cal temperature T to depend on the dimensionality and
system size. As a literature reference, Holm and Janke re-
port Tir ~ 1.440 for a lattice size L of order O(10), !
which agrees with the more general result of Peczak et al.
of Te »1.4432.18 1n general, we expect the critical tem-

perature to be larger for smaller lattice sizes. frors]

iv. Extensions of the Heisenberg Model

Naturally, one may try to extend the (classical) Heisen-
berg model to describe lattice systems with additional con-
straints and effects. One idea is to include a magnetic
anisotropyj, i.e., an additional term in the Hamiltonian
such each spin’s magnetic moment has a preferred direc-
tion. B In contrast to an isotropic model, this anisotropy
leads to differences in the susceptibility depending on the
rotation with respect to the external field. The easy axis is
the direction along which a sample can be magnetized the
casiest. We use & as the vector of the magnetic anisotropy
and define the Hamiltonian of the anistropic Heisenberg
model as follows:

e e 7 \2
HHeisenberg =-J Z 005 _h'ZUi_Z(k'Ui) - (32)
(i.9) i i

Again, we can evaluate eq. eﬂiciently by performing an
additional summation over all lattice sites );, analogous
to eq. [2} To include local magnetic impurities, we can
let k& be position dependent:

L k, if (i,7,k) € Aimpuri

i ki,j,k _ {4’ ( 1 ) impurity » (33)

0, otherwise.

Here, Aimpurity is a region where the magnetic behaviour
differs from the rest of the lattice A. Similarly, we can also
include anisotropies in the interaction strength J — .J; ; .
and magnetic field h— fzi7j’k.

v. Monte Carlo Algorithms

In the previous section, we describe why it is impossible
to study systems that are not small without making use
of numerical algorithms. Such algorithms create states in
thermal equilibrium that follow a Boltzmann distribution.
In our project, we implement two well-established algo-
rithms and extend them to include additional effects such
as external magnetic fields and magnetic anisotropies.

v.1.  Metropolis Algorithm

The Metropolis Algorithm was first published in 1953
to simulate statistical equations of state. b€l 11 the follow-
ing pseudocode (Algorithm 1), we describe the Metropolis
algorithm for a given number of maximal steps Npax.

Algorithm 1 Metropolis Algorithm

Require: Initial lattice configuration

N=1

while NV < N, do
Choose random spin at site %
Compute AE upon flipping spin: 6; - —0;
Accept spin flip with probability:

p=min(1,ePAF)

Continue with (new) lattice configuration
N+=1

end while

For each run IV, we select a spin at random and calculate
the change in energy (determined by the system’s Hamilto-
nian) upon flipping this spin. If energy is gained (AE > 0),
this spin flip is always accepted, otherwise we will only con-
tinue with this new lattice configuration with a probability
p=ePAE Here, we can use different types of spin flips.
The most basic type of spin flip is a perfect spin-flip by
180°:

Gi = —0j. (34)

Obviously, this algorithm is not guaranteed to converge to

thermal equilibrium as we can only calculate 2V different

spin configurations. One generalization is the random spin-
flip move:

o; — 5‘; ) (35)

where &7 is randomly chosen. While this algorithm might

perform well in the disordered phase, it will certainly be
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inefficient for low-temperature regions where spins are
preferably aligned parallel to each other, especially if all
spins point in the same direction in our initial lattice. In or-
der to achieve satisfactory converge behaviour, Haario et al.
proposed an Adaptive Metropolis Algorithm 7 which
is based on the Random Walk Metropolis algorithm, l:6]
see algorithm 1. Here, the #7722/ move is often chosen to be a
Gaussian move instead of a perfect spin flip. This means
that the new spin direction " after a flip is given by:

Ly G+al
== 6
7 |6+aF| (6)

where 7 is the previous spin direction, [ is a random vector
whose components are drawn from a Gaussian distribu-
tion, and « is a variable which is proportional to the width
of the cone around the initial spin direction. Thus, we can
adjust the acceptance rate by changing cv. In every step, we
change o — o’ such that:

1

o' =a-f, f:ma

(37)
where R is the acceptance rate in the previous step with
given . We determine R (where n € IN is the current
step) as following:

SR,

1, if accepted,
R0 = —1 with R; =

8
0, if declined, (8)

n—

where each R; is one (zero) if the spin flip is accepted (de-
clined). We determine Ry € {0,1} for the first step and
process according to eq. 38} With this procedure, we can
tulfill the Golden Rule of the Metropolis algorithm, stat-
ing that an acceptance rate of 50% leads to maximal effi-

18I9] This algorithm has shown to be more efficient

ciency. L
than other commonly used spin update algorithms, inde-
pendently of temperature and anisotropy, leading to lower
correlation times and a faster convergence towards thermal
equilibrium. 51 In the following, we will always refer to
the Metropolis and Adaptive Metropolis algorithms when
the trial moves are a small-step move with a randomly sam-

pled opening angle of 0’ = 10° around the old spinand a
Gaussian move (see eq[36)), respectively.

v.2.  Wolff Algorithm

The main disadvantage of the Metropolis algorithm is criti-
cal slowing down near a phase transition. The Wolff Algo-
rithm B updates clusters of sites instead of single spins to
overcome this challenge. Long autocorrelation times can

be avoided as the converge only shows a weak dependence
on the lattice size. However, using the Wolft algorithm is
discouraged far away from critical points, or for small sys-
tems, with autocorrelation times that are negligible for the
convergence behaviour. 7 In the following pseudocode
(Algorithm 2, we explain the Wolft algorithm which we

implemented by means of a stack.

Algorithm 2 Wolft Algorithm

Require: Initial lattice configuration
N=1
Stack = {}
while N < Ny, do
Choose random spin 0 and random lattice site ¢
Add i to the stack
Flip o; w.r.t. the hyperplane orthogonal to 7:
o; > 0;—2(o;-r)r
while Stack is not empty do
Pop site j from the stack
if Site j is not marked then
Mark site j
Check every neighbor £ of j
Activate bond k — j with probability:
pr(oj,o8) =1~ emin(0,28(r-0;)(r-ox))
if Bond is activated then
Add neighbor £ to stack
Mark site &k
end if
end if
end while
end while

In every algorithmic step, we choose a random spin o,
and a random lattice site 4, flip the spin o; at site 7 with re-
spect to 0, and check the bonds to all neighbors at sites k.
The stack is used to keep track of all remaining neighbors
until all bonds on the surface of our three-dimensional clus-
ter have been checked. While in the Metropolis algorithms,
spins are not always flipped, depending on the energy dif-
ference, this is not the case for the Wolft algorithm. Instead,
we are always flipping a cluster of spins, where the cluster

size is related to the energy difference between spins.
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3. IMPLEMENTATION

i. Code Structure

Our simulation of the Heisenberg model was implemented
entirely in C++. The lattice is implemented with a class
lattice. This class is defined by:

- Ly, Ly, Lz: the dimensions of the lattice,
- bc =o0,p: the boundary conditions (open and peri-

odic).

We have implemented the boundary conditions by always
summing over L, many bonds in the z-direction, even if
we select open boundaries, and choosing the spin 61, 41 at
site Ly, + 1 (which is calculated in the sum term 6;G;4+1 Vi €
[1,L.]) to be 71 for periodic boundary conditions or 0
for open boundary conditions, respectively. The following
algorithm functions:

- void Metropolis(&lattice, T, time,
steps, J, h)

- void Metropolis_Adaptive(&lattice, T,
time, steps, J, h)

- fl1t Wolff(&lattice, T, time, steps)

are called with a reference to the lattice (Lattice
&lattice), the current temperature (f1t T), an amount
of time (f1t time) which they should run for, and the
number of steps (int steps). The algorithms are imple-
mented such that they stop when they run out of time
or have carried out all steps. Thus, we set time = co
for a certain no. of steps = ngteps, and vice versa. It
is important to note that a step in the Metropolis algo-
rithm is not comparable to the Wolff algorithm. Similarly,
the algorithms perform a different number of bond up-
dates during the same amount of time. All algorithms also
require the interaction strength J, the current magnetic
field vector (h, with three different components hy, hy,
h), and the anisotropy vector (k, again with three compo-
nents Ky, ky, k) to calculate the energetic cost of a spin
flip. When calling the respective function, the algorithm
changes part of the spin configuration through its reference
to the lattice (&1attice)ff In addition, the Wolff algo-
rithm also returns the susceptibility. We always used the
Mersenne Twister pseudo-random generator (mt : 19937)
to get random numbers.

#Alternatively, we could also return an array which represents the
lattice in each step. However, this is inefficient with respect to memory
as many copies of the lattice are created.

ii. Thermalization

One goal of this project is to determine when our spin
configurations approach thermal equilibrium depending
on the respective algorithm. For a qualitative analysis, we
calculate the variance of a specific observable such as the
specific heat ¢y which becomes constant in thermal equi-
librium and set a cutoff value for its variance o,,. With

the function:

- loop_algorithm(algorithm,
quantity,T,Ng,Npax) »

we can perform a Markov-chain Monte Carlo simulation
of a certain algorithm (algorithm). We provide a lattice
with given interaction strength and field, the maximal num-
ber of steps Nypqz that the algorithm should run for, and
the step size N after which the current values of a quantity
X = M, E should be saved in another array. This means
that we measure the respective quantity no_of_steps
= round (Ns/Np.) many times. For example, if we
provide a quantity= M, N = 10 and Ny = 30, the
algorithm creates an array_of_steps = [10,20,30]
where the magnetization M is measured after 10, 20 and 30
steps. Then, loop_algorithm(...) returns an array
return_array = [ Miieps=10, Msteps=20, Miteps=30] with
values which can be plotted against array_of_steps.
In a second step, we can loop through this array
of measurements after a certain time or number of
steps and provide arrays of weighted mean values
and weighted standard deviations For example, for
a given array_of_steps=[10,20,30] and the
values_array = [ Mieps=105 Mieps=20, Mteps=30 ]

interested  in

we are average_array =

[Msteps:107 Msteps:ZOv Msteps:SO] where Mstepszl()
Mstepszlo, Msteps=20 = 1-Mueps=10+2-Mieeps=20/3, etc. For a
given set of data points z; € [21, ..., 2y |, the mean value T

is defined as:

M=

1
T=—) x;. (39)
n;

1

Additionally, we have to include weights to correct for the
fact that the measurement after 20 steps already includes

SWe can only use unweighted averages if the measured observable
values (for example magnetization values) are uncorrelated. However,
this is not the case when we determine the convergence behaviour. If
we would not use weighted averages, we would consider the first mag-
netization value (for example after one algorithmic step) with similar
importance as the last one (which might be in thermal equilibrium).
Obviously, we need to correct this, for example by weighing the mea-
surements with the number of algorithmic steps.

MaTteOo CARDENES WUTTIG, JuSTUS GRABOWSKY, DANIEL SCHWARZENBACH, CONSTANGA TROPA 7
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the observable value at 10 steps. Thus, we calculate:

1 n
TV N N..xs
n.Nsum;'L s L, (40)
where Ngm is the sum of all weights, and - Ny
is the total number of steps that have been per-
formed when the i-th step was measured.  Sim-
ilarly, if we

provide the array_of_steps,

values_array, and the previously calculated

array_of_means = average_array(...),

we would like to know std_array =
[UM,steps=IOa 0 M,steps=20, UM,steps=30] . The standard
deviation of an array of data points z; € [21, ..., 2y, ] with

mean value Z is calculated for the n-th sample as following:

%le(xi -7)2, (41)

with ox 1 = 0. We are using the biased sample variance
agg ,, Tather than the unbiased samples variance (where the
normalization is given by ﬁ instead of %) because our
samples (21, ..., 2y | are not drawn independently, but in-
stead form a Markov chain. Hence, we also have to consider
that our samples are weighted by the total number of steps
i- N that have been performed for the i-th step. We can

calculate the standard deviation with weights given by the
array [N, 2 N, ..., Nmax | as follows:

SN @- ()

g =
Xon n'Nsum =1

In F1G. [1f we sketch the procedure to determine the
thermalization after Neq steps and the subsequent run of
a certain algorithm to determine expectation values (X)
of a given quantity. First, we measure after which number
of steps N the variance of a certain observable (X = cy/, x)
falls below an error (corresponding to a certain o, ,0y )
that we have set previously. Next, with an order of mag-
nitude for IV in mind, we can calculate the number of
steps precisely by means of the non-linear correlation time,
see eq. Obviously, we have to check that the mean
value X converges to the anticipated equilibrium value
Xeq. With this procedure, we determine a fixed number
of steps Neq after which the algorithm has reached ther-
mal equilibrium. We expect Neq to be dependent on the
specific algorithm used. In contrast to the Metropolis algo-
rithm, each step in the Wolff algorithm generally consists
of a different amount of operations. Hence, a number of
steps [N of each algorithm is preferable over a fixed amount
of time. The thermalization condition has to be checked

T = const.

one algorithm step

N algorithm steps

Gerl’L .....................................
| |llll||IIIIIIIII||

1 Neq 1 Ns Nmax‘Ns Nmax

thermalization  loop _algorithm()

N

FIGURE 1: Measuring the observables: First, we wait for the
thermalization to set in after a certain number of
steps Neg. This is confirmed by plotting a quan-
tity X = cy, X which converges upon reaching
thermal equilibrium. Then, the variance of X
goes to zero. After reaching thermal equilibrium,
we measure an observable of interest X = M, E
(blue cross) every time after running the algo-
rithm for N steps and repeat this until we have
performed N pag steps. The resulting array of val-
unes[X 1, ...,szmaz/ﬂ,s] is used to determine the ex-
pectation values (X ) (green line) and (X?) as
well as the variance (light-green area) up to the
i-th step. After Npqg steps, we can determine the
order parameter M and energy E as well as spe-
ctfic heat capacity ¢y and magnetic susceptibility
X-

for different temperatures as the algorithms converge dif-
ferently depending on 7. Also, we have to consider that
Neq will scale linearly with the system size, i.c., volume. To
reduce the number of steps Neq, we will use the following
initial lattice configurations:

— T <Te: all spins along the z-direction,
— T >Te: all spins randomly orientated.

Since we will never reach T exactly, there is no need to

include the case T' = T¢.

iii. Calculating the Observables

In F1G. |1, we explain why the procedure for approximating
expectation values in the thermalized system (after Neq
steps) is equivalent to the way how we determine the ther-
malization in the first place, apart from the specific quan-
tity that we measure. We start by determining the num-
ber of steps INg between two measurements after which
the respective lattices do not show any correlations due
to the algorithms. If we choose to measure this quantity
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as time (tg), then we have to ensure that tg > 79 where
70 = 76'(T") is the autocorrelation time, which will also
depend on temperature, the lattice volume, and the respec-
tive algorithm. Moreover, it is important to ensure that
the variance for the i-th data point 0; x of all values up to a
certain average value Y,- generally scales as oy ~ \/—1]_\[ We
expect Ngg (T') to become maximal upon approaching T¢,
which is known as critical slowing down. 7 Once we have
determined Neq and Ng and we have reached thermal equi-
librium, we can measure X = M, F every N steps until we
have performed Ninayx steps. In [ X1, ..., Xugax g | we have
saved round (Neax/Ns) values of the observable X for every
different external condition. The average value of this array
is (X'), and the variance it related to o x, i.e., the specific
heat capacity or susceptibility. We can calculate {X?) and
(X 4) analogously. When measuring the order parameter
of the phase transition, it is preferred to use (M) and not
M, for a single measurement. Similarly, we are using ()
instead of E; to show how the total energy changes, for
example when changing temperature.

4. REsuLrTs

In the following, we always use units of J = 1 and kg =
1, and thus 8 = % Unless otherwise noted, & = 0 and
k = 0. For the initial lattice configuration, we set 0; =
(0,0,1)Vie A (i. e. fully magnetized along z) for T' < T
and use random spins at every site for 7' > Tc.

i. Convergence

First of all, we have to determine convergence criteria for
the thermalization. In F1G. [2} we present the convergence
of the specific heat capacity for different algorithms de-
pending on the number of steps. For a given lattice size
L = 8 and difterent temperatures 7' = 0.3, 1.44 and 2.37,
we determine the weighted mean energy F after a certain
number of algorithmic steps V. The energy variance is
proportional to the specific heat capacity ¢y, which con-
verges to its equilibrium value after a sufficient amount of
steps. We see that for low temperatures, the Metropolis
algorithm behaves similar to the Wolft cluster algorithm.
In the low-temperature ordered phase, the Metropolis algo-
rithm with small step trial moves leads to faster convergence
compared to the Adaptive Metropolis algorithm with a
Gaussian move. Close to the critical temperature, we can
observe that the Wolff algorithm leads to fast convergence,
whereas the Metropolis algorithms suffer from critical slow-
ing down. In the high-temperature disordered phase, the

Adaptive Metropolis algorithm shows faster convergence
in comparison to the normal Metropolis algorithm, while
converging after a similar amount of steps as the Wolft algo-
rithm. Those qualitative results agree with our expectations
of the convergence behaviour. In general, it is preferable
to use different algorithms depending on the temperature.
Our qualitative data (which shows how the variance of E/
converges) can be compared to the calculated values for the
non-linear correlation time (or an amount of steps Neq)
after which we consider the system to be thermalized. This
gives us a rough estimate of the number of steps that we
need to reach thermal equilibrium.

L i i s
14001 /7 .
r Algorithm ]
21450 r /— Metropolis ] r
[ Adp. Metropolis] C
L Wolff ] [
-1500 - 5 r
o [ 1 ot
0.0 0.5 1 0.
S500FT T T T T T T T T r
750 C
750 [ Algorithm r
-1000 o . Metropolis ' ] j
o Adp. Metropolis] r 1
1250 F Wolff ] j] 7
1500 . ] 0 ij T— 144 = Te ]
0.0 0.5 1.0 0.0 0.5 1.0
T e — e :
Uy Algorithm ] 0 ﬁ
F{ —— Metropolis 1 | J
L\ - Adp. Metropolis] - |
-100 - 4 L
- I Wolff i ?20 L il
L 1 & r 1
L - b |- 1 -
-200 - * | |
[ - — f— al
e o T BT T
0.0 0.5 1.0 0.0 0.5 1.0

N [steps] x10° N [steps] x10°

FIGURE 2: Energy E and variance o ~ ¢, (weighted aver-
ages) for different algorithms (purple: Metropo-
lis, turquoise: Adaptive Metropolis, yellow:
Wolff) after a certain number of algorithm steps
N up to Nypax = 10% for T = 0.3 < To (up-
per row), T' = 1.44 ~ T (middle row), and
T =237 > Tc (lower row). The convergence
bebavior of ¢y is used to determine thermal equi-
librium when o, — 0 (not shown). All data is

calculated for L = 8.

In F16. [3} we present an example of a non-linear corre-
lation function ¢(NV) for up to NV = 200 and N = 10000
steps for the Wolft and (Adaptive) Metropolis algorithms,
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respectively. Additionally, we plot an exponential fit with
the non-linear correlation time 7 = 25 steps for the Wolft al-
gorithm. Usually, one multiplies this value with 3 to correct
for errors. All calculations were performed at 7" = 2.33.

Non-Linear Correlation Function

“j‘ . T = 2.33 -~ M

;% 1.0k Adp. M

E L W

- 05F

3 L

[}

4 0.0

% | Il . Il .. |

2 100 5000 10000
Steps [N]

FIGURE 3: Non-linear correlation function ¢ as a function
of steps N for three different algorithms. Blue:
Metropolis (M), Red: Adaptive Metropolis (Adp.
M), Green: Wolff (W) for T' = 2.33, including
the exponential decay (orange) for T = 25 steps
and L = 8.

Starting off from a random initial lattice, we see that
the Wolff algorithm converges after few steps, whereas the
Metropolis and Adaptive Metropolis algorithms take about
one to two orders of magnitude more steps to converge. In
F1G.|4} we present the non-linear correlation time which
is defined as a discrete sum of the non-linear correlation

function, see eq.

Non-Linear Correlation Time

o r'T =233 . M

g 30 - Adp. M

= [ W

o 20

—

8 .

e 10

T L

o 0f

Z ! | v ! | ! |
0 100 5000 10000

Steps [N]

FIGURE 4: Non-linear correlation time T as a function of
steps N for three different algorithms. Blue:
Metropolis (M), Red: Adaptive Metropolis (Adp.
M), Green: Wolff (W) for T = 2.33 and L = 8.

With this procedure, we determine the non-linear cor-
relation time Neq, which we present for three different
temperatures 1’ = 0.3,1.44, and 2.33 below, at, and above
the phase transition, respectively, see TABLE The calcu-

lations were performed for all algorithms on a lattice of
size L = 8. Those values show the phenomenon of critical
slowing down for the Metropolis algorithm: the non-linear
correlation increases by a factor of approx. 111. In com-
parison, we observe that Neq decreases for the Adaptive
Metropolis algorithm, and stays approx. constant for the
Wolft algorithm.

Algorithm: | Metropolis Adp. Metropolis Wolff

T=0.3 2.7-10* 4.5-10% 9.6-10!
T=1.44 3.0-109 3.0-10* 8.0-10!
T=2.33 1.5-10° 2.0-103 1.2-103

TABLE 1: Non-linear correlation time: Number of steps Ne,
needed to reach thermal equilibrium for different
temperatures T = 0.3,1.44,2.33 and all three
algorithms. All values were calculated for L = 8.

In TABLE |2} we present linear correlation times for the
same temperatures, which were determined similarly. We
see that the amount of steps needed for two lattice configu-
ration to be uncorrelated increases for temperatures close
to T Furthermore, we observe that the Wolff algorithm
needs approx. three orders of magnitude fewer steps.

Algorithm: | Metropolis Adp. Metropolis Wolff

T=0.3 1.5-106 9.0-10% 4.5-10%
T=1.44 4.2-109 1.2-10° 9.0-102
T=2.33 3.0-10° 6.0-10* 6.9-10°

TABLE 2: Linear correlation time: Number of steps Ng be-
tween two measurements in thermal equilibrium
for different temperatures T = 0.3,1.44,2.33
and all three algorithms. All values were calcu-

lated for L = 8.

Oneimportant caveat regarding those results is the initial
lattice configuration. In order to ensure similar algorithmic
performances for T' g T and T' $ T, it might be useful
to choose a mixture of both initial lattice configurations.

For example, one could define:

5—2'»j7k = OZ&Z + Ba—random ; (43)

where G, is a spin along 2, Gpndom 2 random (nor-
malized) spin, and o(T") + (1) = 1 are choosen
such that (T —-0)=1, [(T'>o0)=1 and
a(To)=B(Tc)=0.5.  Otherwise,
correlation times of T' ¥ T and T' § T cannot be

the non-linear

compared due to different initial lattices.
Based on the previous calculations, we provide the fol-
lowing estimates for the non-linear and linear correlation

10 MaTteOo CARDENES WUTTIG, JuSTUS GRABOWSKY, DANIEL SCHWARZENBACH, CONSTANGA TROPA



HEeI1sENBERG MODEL IN 3D

times, Neg and N, respectively. The following values are
based on our results for L = 8 and normalized by L3. We
find that the non-linear correlation time per spin at T is:

Neq / Spin=5.86-10°  (Metropolis),
Neq / Spin =5.86-10"  (Adp. Metropolis),  (44)
Neq / Spin =1.56-10"" (Wolff).

Similarly, we determine the linear correlation time per spin
at T to be:

Ns / Spin =8.20-10°  (Metropolis),
Ns /Spin=2.34-10* (Adp. Metropolis),  (45)
Ng / Spin =1.76 (Wolff).

ii. Phase Transition

Perhaps the most interesting feature of the Heisenberg
model is its phase transition from a ferromagnetic low-71"
phase to a paramagnetic high-7" phase. In F1G. s}, we present
the order parameter M and the magnetic susceptibility x
for alattice of size L = 8 and all three different algorithms.
In the left plot, we can clearly recognize a phase transition
around T =~ 1.4, although the divergence of the magnetic
susceptibility seems to be closer to T" ~ 1.5, see also right
plot. We have used temperature steps of AT" = 0.01 around
T¢ for all calculations.

Magnetization

Susceptibility
e

T T T T T T T T T
Metropolis 0.0050 - i

[ Adp. Metropolis ] P

1.0 r Wolff 7
= [ 1=

F 0.0025 bl
0.5 1

L 1 1 L Il L 1 L Il (- I il | ; Il L Il L 1 1
0-0 08 12 16 20 0-0000 08 12 1.6 2.0

T [1/K = 1] T [J/K = 1]

FIGURE s: Magnetization M (left) and magnetic suscep-
tibility x (right) vs. temperature for different
algorithms. All calculations were performed for
L=8

In F1G. |6} we present the specific heat capacity ¢y /N
(normalized by the total number of spins V) for difterent
temperatures. We can observe a divergence of ¢y (left) and
use the maximum value (right) to determine the critical
temperature to be T = 1.40 + 0.02. This value is close to
the literature, e.g., the study of Holm and Janke ] that
predicts T = 1.4430 + 0.0002 (L of order O(10)), or
the result of Peczak et al. 3l with T~ ~ 1.4432 + 0.0002.

Our estimate can be made more precise by performing ad-
ditional Monte Carlo sampling with smaller AT around
the critical temperature. The error bars are 1o standard
deviation of the respective quantity M, cy and x calcu-
lated by performing M = 36 parallel runs with the same
algorithm and temperature, see also eq. |46|(Appendix).
We measured all observables every Ng = 10* steps and eval-
uated up t0 Ny = 108 steps for the (Adaptive) Metropo-
lis algorithms, leading to 10* data points for M and E.
For the Wolff algorithm, we used Ng = 102,102,103 and
Ninax = 108,106,107 for low temperatures (1" < 1), tem-
peratures close to T (1 <T' < 2), and high temperatures

(T > 2), respectively.
Specific Heat Capacity
— 77— T
i T
2.5 7
ﬁtm{ ......... 1.38
[ 1 W i 1.40
z | 11 ”}5{ =z 1.42
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FIGURE 6: Left: Divergence of the specific heat capacity
perspin cy | N for different algorithms. Right:
Zoomed-in plot without ervor bars. The critical
temperature T can be estimated by determin-
ing the maximum of cy (T'). All calculations
were performed for L = 8.

Magnetization
T : T T T T T
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FIGURE 7: Simulation for different lattice sizes L =
4,6,8,10,12,14,16. Left: Magnetization vs.
temperature. Right: Specific beat capacity (nor-
malized by the total number of spins) vs. temper-
ature. All calculations were performed with the
Adaptive Metropolis Algorithm.

After confirming the existence of a phase transition
around T(c ~ 1.4, we are interested in understanding how
the critical phenomena depend on the lattice size L. In F1G.
we present the magnetization M and specific heat capac-
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ity ¢y /N for different lattices from L =4 up to L = 16. In
the left plot, we can that the magnetization curve M (1)
depends on the lattice size. While for smaller lattices, M
stays large even in the high-temperature phase, we can ob-
serve that M — 0 for T' > T(c with increasing lattice size.
In the right plot, we can see that the temperature at which
cy diverges seems to be independent of L. Additionally,
we see that the specific heat capacity saturates for larger

lattices and becomes independent of size, as expected.

Susceptibility Finite-Size Scaling
0010 F———1——T1—7 Leneht L LI B P B
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FIGURE 8: Left: Susceptibility X, unnormalized. Right:
Finite-size scaling of the susceptibility for critical
exponents v = 0.86 and y = 0.89. Simulation
with Adaptive Metropolis Algorithm for differ-

ent lattice sizes.

In F1G. |8} we present the susceptibility  for the same
lattice sizes. In the left plot, we present x which shows
a characteristic divergence, where the peak temperature
seems to converge to 1 for larger lattices. Interestingly,
this observable does not collapse when normalized by the
total number of spins. Instead, we can use a finite-size
scaling relation, see eq. 29| For our calculations, we used
Tc = 1.443. By systematically changing v and v, we find
values of v = 0.89 £ 0.05 and v = 0.86 + 0.05 for which
X(L,T) collapses. The errors are determined based on the
linear spacing Ay and Av of examined (-, )-pairs. How-
ever, those critical exponents are in strong disagreement
with the literature values of 7 = 1.389 and v = 0.704. I
One possible reason is the peak of the susceptibility, which
is shifted towards T(> ~ 1.5, see also F1aG. El Indeed, in F1G.
we show that the susceptibility peak depends on the
lattice size. The maximum susceptibility at T}« deviates
slightly from T, and there is no clear trend upon changing
L. In F1G. 10}, we present the scaled susceptibility and show
that for different values of T(, the literature expectations
of v=1.389 and v = 0.704 are still not leading to a data
collapse. One possible solution for future investigations is
a more extensive range of lengths L, and a larger value of

Lmin-
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FIGURE 9: Susceptibility x normalized by the maximum
value at temperature T,,,,y, depending on the lat-

tice size L. Simulation with Adaptive Metropolis
Algorithm for different lattice sizes.
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FIGURE 10: Finite-size scaling of the susceptibility for crit-
ical exponents v = 0.704 and v = 1.389 and
To = 1.443 (left), T = 1.46 (middle) and
Tc = 1.54 (right). Simulation with Adaptive
Metropolis Algorithm for different lattice sizes.

Another way to determine v, the critical exponent of
the correlation length, is to apply linear fits to the Binder
cumulant U, (3) ~ m- B +b for different L. Then, we can
determine 1/v as the slope of logm vs. log L. With this
method, we calculated v = 0.737 + 0.076, which agrees
with the literature value of v = 0.704 + 0.006.
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FIGURE 11: Stmulation with Adaptive Metropolis Algo-
rithm for different lattice sizes. Left: Binder
Cumulant U, vs. temperature. Right: Zoomed-
in plot to determine T as the temperature where

all curves overlap.
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One main interest of Monte Carlo studies is the critical
temperature 7 of a phase transition, which can be deter-
mined precisely by means of the Binder cumulant, see eq.
In F1G. |1, we calculate Uy, as a function of tempera-
ture for different lattice sizes L. With this method, we can
determine the intersection and thus critical temperature
to beatT =1.44 + 0.01. The error is determined as the
distance AT to the nearest pair of Uy, data points which
do not collapse into a single point. This fit matches the
literature value of T = 1.4430 + 0.0002. I

iii. Critical Exponents

One can describe the behaviour of many observables close
to the critical temperature by means of critical exponents.
Based on our previous calculations, we can apply a least
square fit to determine the critical exponent 7 for a quan-
tity X(T') where X = M,cy, X In the following
TaBLE[] we list the respective critical exponents (z and
z' for T > T and T' < T, respectively) with their error
Ax based on the least squares fitting procedure. We use the
Wolff data from Fia. [§|for our calculations and choose a
fitting range close to T with 7" € [1.46,1.6],[1.31,1.8]
and [1.35,1.65] for M, ¢y and x;, respectively.

| M cy X

limyo- | / a'=-0.827+£0.090 ~'=1.120+0.085

limyo- | B=0.377+0.044 « =-0.120+0.065 ~ =1.107+0.051

TABLE 3: Critical exponents for the magnetization 3, spe-
cific beat capacity o and o, and susceptibility y
and ~'. All data was calculated for L = 8 using
the Wolff algorithm.

We did not encounter significant differences when de-
termining the critical exponents using data from the Adap-
tive Metropolis algorithm. For the same fitting range,
we calculated 8 = 0.380 + 0.045, v = 1.215 + 0.080
and 7/ =1.142+0.085, and o = —0.119 + 0.066 and
o' =-0.919 £ 0.088, which is in agreement with the val-
ues in TABLE| In comparison to the study by Holm and
Janke, ™! we find that our critical exponents for the or-
der parameter 3 match well with their prediction (8y;, =
0.362+0.004). Similarly, they find ay;, = —0.112+£0.018,
which matches well with our estimate for . However,
our result for ' in the low-temperature phase does not
match the expected value. One reason is the smaller num-
ber of data-points for 7' < T compared to T > Te.
Holm and Janke further provide a reference value for

®This means that we fit X(T) ~t™ witht = (T-T¢)/Tc.

Yie = 1.389+0.014. Our estimate of v =1.107 £ 0.051 is
close to the literature, although not in agreement within
the errors. This result has the lowest relative error, perhaps
underestimating the fitting error. It is important to note
that this calculation can be enhanced by performing ad-
ditional simulations close to T, and also by using more
Monte Carlo samples for each data points.

iv. Comparison of Algorithms

Due to the different convergence behaviours, one might be
interested in interchanging the algorithms at different tem-
peratures. In F1G. 12} we show the relative deviation of M
and x when calculated with the three different algorithms
(M: Metropolis, Adp. M: Adaptive Metropolis, W: Wolff),
normalized by the average value at each temperature. The
errors were calculated from the data in F1G. [s|based on an
uncertainty propagation of independent variables.

Magnetization Susceptibility
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FIGURE 12: Deviation of M (left) and x (right) for the three
different algorithms (M: Metropolis, Adp. M:
Adaptive Metropolis, W: Wolff), normalized
by the average value at each temperature.

We observe that for M and Y, the deviations are more
pronounced close to the critical temperature. This is due
to the large fluctuations of M (or equivalently, the diverg-
ing susceptibility) close to T(c. Our data shows that the
differences between the algorithms are negligible in most
cases. This means that the results from different algorithms
are consistent with each other. However, one must be
careful when using algorithms which show unsatisfactory
convergence behaviour at a certain temperature, e.g., the
Metropolis algorithm close to T in comparison to Wolft
algorithm, see also F1G.l In TABLE[4} we present the
relative deviations in magnetization between all three algo-
rithms at different temperatures in absolute values (with-
out signs). We see that the calculated values of M do not
differ significantly at low and high temperatures. Thus, we
can combine the results from different algorithms in those
temperature regimes without significantly enhancing the
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error. Close to Tz, the use of Metropolis algorithm (M) is
discouraged. Instead, we recommend using the Adaptive
Metropolis (Adp. M) or Wolft (W) algorithms.

Algorithm: | M - Adp. M M-W W - Adp. M
T=o.01 0.00104 +£0.00007 0.040051 +0.000010  ~0.03901 +0.00007
T=ou1 0.0003+0.0007  0.03374+0.00012  0.0334+0.0006
T=10 0.024+0.010 0.078 +0.006 0.054 +0.008
T=14 0.57+0.19 0.28+0.16 0.30+0.10
T=144 1.04+0.28 1.22+0.27 0.18+0.06

T=1s 0.42+0.35 0.33+0.29 0.75£0.20

T=20 0.76 £ 0.09 1.0220.09 0.27+0.04

T=10 0.007 £0.010 0.055 +0.006 0.048 +0.009

T =100 0.0296+0.0011  0.7099 + 0.0004 0.6803 +0.0011

TABLE 4: Relative deviations in magnetization |AM / M‘
in percent (absolute values) between the different
algorithms (M = Metropolis, Adp. M = Adaptive
Metropolis, W = Wolff) for different tempera-
tures.

Another property of interest is the algorithmic perfor-
mance, which can be determined as the time per algorith-
mic step. In F1aG. [13/(left), we present the time per algo-
rithmic and Monte Carlo step. It is important to note that
each step in the Wolff algorithm involves flipping a large
cluster of spins, in comparison to single-bond updates for
the Metropolis algorithm.

Time per Monte Carlo Step
F T T W T

Time per Algorithm Step
—_—

[Te-1.443] L=8] ETe 1443+ L—8] M
- 4L 5o 4
100 i s 10 g o Adp. M
g f 1 @ E % ] W
2 1 Zwg E
(5] — = 3
£ 100 E o N an ]
= E 3 g 106 AR
£ 1 g 0% E
F ~ 1 B ]
oo ot o ] ]
1 -7 L 1 ' 1 10—7 1 s 1
v 0 1 2 0 1 2
T [J/K = 1] T [J/K = 1]

FIGURE 13: Comparison of algorithmic performance of the
Metropolis (blue), Adaptive Metropolis (red),
and Wolff (green) algorithms. Left: Time per
algorithmic step. Right: Time per Monte Carlo
(MC) step.

For the Wolff algorithm, can see that the time per step
reduces with temperature due to the decreasing cluster size.
The Metropolis algorithm becomes slower close to T(c due
to a larger number of bond updates. In contrast, the Adap-
tive Metropolis algorithm shows a constant performance,
independent of temperature. This behaviour is expected
as the Adaptive Metropolis algorithm leads to a constant
acceptance rate, whereas the acceptance rate of the nor-
mal Metropolis algorithm only depends on the Boltzmann
factor of a certain spin-flip. Similar trends can also be ob-

served in the right plot of F1G. [13} where we present the
time per Monte Carlo (MC) step. The data of this figure
leads to several interesting conclusions. First, the Metropo-
lis algorithm is always slower than the Adaptive Metropolis
algorithm, confirming the assumption that an acceptance
rate close to 50 % is desirable for a good algorithmic per-
formance. Secondly, the Wolft algorithm might reduce
critical slowing down and thus leads to a smaller number
of update steps, but each of those steps takes about one to
two orders of magnitude longer, see left plot. Hence, the
main benefit of a cluster update procedure might only be
beneficious for lattices larger than L = 8. Thirdly, as the
cluster size shrinks with increasing temperature, the perfor-
mance differences of all algorithms become negligible for
high temperatures T' > T(c.. At least for small lattices, we
observe that the Adaptive Metropolis algorithm performs
best, independent of temperature. In F1G. |14} we also show
that the time per algorithmic step is almost independent
of lattice size for the Adaptive Metropolis algorithm. The
largest time/step is 1.73 - 1077 sec. for L = 2, while the
smallest value is 4.37 - 1078 sec. for L = 6. While we have
no explanation why the performance is roughly one order
of magnitude higher for L = 6 and L = 10, we conjecture
that in general, the performance is independent of L. Since
the time per algorithmic step is also almost independent of
T, see F1G. 13} the previously calculated values universally

characterize the algorithmic performance.

Time per Algorithm Step
(Adaptive Metropolis)
e e

Average Time per Algorithm Step
(Adaptive Metropolis)
T

7 71 143 L 7 z
2-107+1.8-107 >4 2-107F +  1.8-107H
. e 2 .
= LA 4 = s r T x
a 1.5-107 I o 1.5-10°7
2 602
20Tk b 4 . 10 2 107k .
[ 432 i S [ )
E I o 12 g [
6108k - dL 4 B G|
L 16 L
4.108 L Tl L 1 4.108b—L 110
1 2 3 4 8 12 16
T[J/K =1] L

FIGURE 14: Time per algorithmic step for the Adap-
tive Metropolis algorithm and varying lat-
tice lengths L = 2,4,6,10,12,14,16. Left:
Temperature-dependence of time / step. Dotted
grey line: T Right: Average time / step for all
lattice sizes. The errors are standard deviations

over the full temperature range, see left plot.

From the previous data, we can calculate the average time
per algorithmic step over all temperatures for all algorithms,
see TABLE(s| Note that those averages are only meaningful
for characterizing the performance for critical phenom-
ena, i.e., when applying Monte Carlo sampling around 7.
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This data matches the previous assumption that overall,
the Adaptive Metropolis algorithm is best suited for Monte
Carlo sampling.

‘ Metropolis

(2.74+0.35)-1077  (1.96+0.05)-1077 (3.8+3.1)-1076
(1.8+0.7)-107%  (2.1£1.5)-107°

Algorithm: Adp. Metropolis ‘Wolff

Time / Step
Time / MC Step | (7+4)-107°

TABLE s: Average time per algorithmic step and MC step
for all algorithms for L = 8 in units of [s]. The
average value and error were calculated over all
different temperatures.

v. External Field and Magnetic Anisotropy

Our implementation of the external magnetic field i and a
magnetic anisotropy k allows us to study symmetry break-
ing in more detail. In F1G. [i5] we show how fast the lat-
tice configurations are de-magnezited, depending on the
temperature. Additionally, we have included magnetic
anisotropies anti-parrallel to the initial lattice configura-
tion, see right plot.

h,=1,%,=0 h,=1,k,=-1
1.0F ' = 1.0 . ' '
: T {
0.5 / T . 0.5 T .
! — 0.5 ] — 05
= 0.0F 15 4 =o00f ! 1.5 4
i 3.0 1 g 3.0
0.5F — M J  osfF fo— M ]
E e M, ] S M, ]
-1.0E , ] SLOET , -
0.0 0.5 1.0 0.0 0.5 1.0

N [steps] ~ X10° N [steps] X107

FIGURE 15: Implementation of an external magnetic field
and a magnetic anisotropy: Magnetization M
(solid line) and M., (dotted line) vs. run-time of
Metropolis Algorithm (small step move) for dif-
ferent temperaturesT" = 0.5,1.5,3.0 with mag-
netic field h, = 1. The initial lattice configura-
tion was always chosen to be M, = —1. Left: Up
10100 steps without magnetic anisotropy: k., = 0.
Right: Up 0 107 steps with magnetic anisotropy
k. = =1, easy axis along —z-direction, corre-

sponding to the initial magnetization.

In the left plot, we see that the de-magnetization is
temperature-dependent. For higher temperatures, we need
more algorithmic steps to reach thermal equilibrium and
align our spin parallel to h after flipping all spins by 180°
from their initial value. Moreover, we see that for low tem-
peratures, the magnetization aligns with the external mag-

netic field (M — 1), as expected, while for higher temper-
atures, thermal fluctuations reduce the average magneti-
zation, even with an external magnetic field. In the right
plot, we can clearly see that a magnetic anisotropy of same
magnitude and antiparallel to the external magnetic field
leads to a competition between h to align all spins along
h = +z and the preferred direction of £ along —z. Thus, the
magnetic anisotropy slows down the de-magnetization (or
anti-magnetization, as we see a 180° flip of the magnetiza-
tion component M ). Additionally, including a magnetic
anisotropy changes the equilibrium value of M as thermal
fluctuations are lower compares to k£ = 0.

5. SUMMARY AND OUTLOOK

Our implementation of the Heisenberg model in C++ of-
fers a suite of methods to study all physical quantities of
interests. We allow to measure and plot I/, M, cy, x for
different temperatures T, side lengths L., L, L, and thus
dimensions D), interaction strengths .J, external magnetic
fields 71, and internal magnetic anisotropies k. Our im-
plementation of the Metropolis algorithm also allows for
different trial moves, including Gaussian, small-step and
random sampling as well as perfect spin-flips. By measuring
physical quantities for different run-times or numbers of
algorithmic steps when varying the external parameters, we
can also study the convergence behaviours of the (Adaptive)
Metropolis and Wolft algorithms. We provide a reference
for the number of steps needed to reach thermal equilib-
rium (non-linear correlation time) and the number of steps
for Monte Carlo sampling (linear correlation time). We
have showed that the calculation of observables does not de-
pend on the specific algorithm. Hence, we can combine the
results of the Metropolis algorithm and Wolft algorithms.
Furthermore, we show that the algorithmic time per step is
independent of temperature for the Adaptive Metropolis
algorithm, while we observe an increase around the critical
temperature for the normal Metropolis algorithm, and a
decrease with temperature for the Wolff algorithm due to
the formation of smaller clusters. We present a conversion
factor of Monte Catlo steps to real-life run-time to estimate
the total time needed to calculate expectation values. With
those tools, we can determine the phase transition, critical
temperature, and critical exponents. For those investiga-
tions, we simulated lattices between L = 2 and L = 16 at
over so temperature points. Our implementation of exter-
nal fields and internal anisotropies allows us to study the
magnetization over time with the Metropolis algorithm,
for example as a comparison to experimental data.
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Further ideas include the efficient calculation of differ-
ent types of local magnetic impurities, e.g., by allowing to
choose a superposition of local l_{:, and global anisotropies in
the lattice by choosing J to be dependent on the bond ori-
entation. Additionally, including higher dimensions D > 4
is of interest to use our implementation for the study of
higher-dimensional space-time models. One may also be
tempted to include other lattices such as triangular, honey-
comb, or Kagome lattices. The algorithms can be improved
turther by implementing parallelization procedures which
exist for both the Metropolis B9l and Wolff algorithm. b1
An IPPL implementation would allow to investigate larger
lattices on high-performance computing clusters. In or-
der to study external fields at all temperatures efficiently,
we are working on an extension of the Wolff algorithm to
include both nearest-neighbor interactions as well as in-
teractions with external parameters. Our approach makes
use of so-called ghost cells where additional operations of a
certain symmetry group on our lattice spins represent mag-
netic interactions. P Further potential for investigation
also exists in the study of hybrid Monte Carlo algorithms.
For example, it was shown that the addition of Metropolis
spin-flips to Wolft cluster algorithms can lead to improved
performance. 223] The idea to combine the (Adaptive)
Metropolis and Wolft algorithms aligns with our results
on algorithmic performance, and might outperform our

current implementations.
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APPENDIX

Non-Linear and Linear Correlation Time

In order to determine the expectation values in eq.
we perform M different runs where we use a certain
algorithm on the same initial lattice configuration at
the same temperature 7" and measure X every time af-
ter a certain amount of steps until we have reached
Nmax steps. Thus, we get M different arrays of values
[Xi(t0),.... Xi(tn,, )]0 €{1,..., M }. We can then eas-
ily calculate:

M=
I

<
I
—_

(X)) =

(X(t0))= Xi(to) (46)

~
Il
—_

Mk

~
Il
—_

(X(t > 00))= Xi(E ) -

== == =[=
M=

Furthermore, we can determine the covariance:

(X(to)X (t)) =
M (Xi(to) — (X (t0)) ) (Xa () - (X ()
o ,
(47)

given the expectation values (X (¢9)) and (X (t")) at to

and at a certain time ¢, respectively.

Fluctuation-Dissipation Theorem

In general, the specific heat is defined as:

oy = 400 (45)

and the magnetic susceptibility is given by:

X = _déﬂ;) : (49)

where H is the external field. For the Ising model, we can

easily calculate (F) and (V'):

-BE; Y, Eje PP
E; = p—
Z >, e P

(E)=2piEi=}, : (50)

where
__d(B)_ 4B d(E)
V>4ar T 4dr  dg
——
=—1/kyT?
1 d([(EiEePh
 kgT2?2dp\ X, e BE (s1)
__ 1t ZiEz'Q@iﬁEijL 5 Eie PP \?
kT2 T fh Yie P
=(E?) =(E)?

The calculation follows analogously for the magnetic sus-
ceptibility . For the Heisenberg model, we get the same
result, although the derivation is not as clear. If we know
how (E) depends on T, we have another way to deter-
mine cy . Using eq.[48} we can calculate this derivative, for
example by using numerical differentiation.
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